Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 25(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331317

RESUMO

NadR is a bifunctional enzyme that converts nicotinamide riboside (NR) into nicotinamide mononucleotide (NMN), which is then converted into nicotinamide adenine dinucleotide (NAD). Although a crystal structure of the enzyme from the Gram-negative bacterium Haemophilus influenzae is known, structural understanding of its catalytic mechanism remains unclear. Here, we purified the NadR enzyme from Lactococcus lactis and established an assay to determine the combined activity of this bifunctional enzyme. The conversion of NR into NAD showed hyperbolic dependence on the NR concentration, but sigmoidal dependence on the ATP concentration. The apparent cooperativity for ATP may be explained because both reactions catalyzed by the bifunctional enzyme (phosphorylation of NR and adenylation of NMN) require ATP. The conversion of NMN into NAD followed simple Michaelis-Menten kinetics for NMN, but again with the sigmoidal dependence on the ATP concentration. In this case, the apparent cooperativity is unexpected since only a single ATP is used in the NMN adenylyltransferase catalyzed reaction. To determine the possible structural determinants of such cooperativity, we solved the crystal structure of NadR from L. lactis (NadRLl). Co-crystallization with NAD, NR, NMN, ATP, and AMP-PNP revealed a 'sink' for adenine nucleotides in a location between two domains. This sink could be a regulatory site, or it may facilitate the channeling of substrates between the two domains.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Lactococcus lactis/enzimologia , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Ativação Enzimática , Cinética , Modelos Moleculares , Conformação Molecular , NAD/metabolismo , Mononucleotídeo de Nicotinamida/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Especificidade por Substrato
2.
J Gen Physiol ; 150(1): 41-50, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29203477

RESUMO

Membrane transporters of the bacterial pyridine nucleotide uptake (Pnu) family mediate the uptake of various B-type vitamins. For example, the PnuT transporters have specificity for vitamin B1 (thiamine). It has been hypothesized that Pnu transporters are facilitators that allow passive transport of the vitamin substrate across the membrane. Metabolic trapping by phosphorylation would then lead to accumulation of the transported substrates in the cytoplasm. However, experimental evidence for such a transport mechanism is lacking. Here, to determine the mechanism of thiamine transport, we purify PnuTSw from Shewanella woodyi and reconstitute it in liposomes to determine substrate binding and transport properties. We show that the electrochemical gradient of thiamine solely determines the direction of transport, consistent with a facilitated diffusion mechanism. Further, PnuTSw can bind and transport thiamine as well as the thiamine analogues pyrithiamine and oxythiamine, but does not recognize the phosphorylated derivatives thiamine monophosphate and thiamine pyrophosphate as substrates, consistent with a metabolic trapping mechanism. Guided by the crystal structure of the homologous nicotinamide riboside transporter PnuC, we perform mutagenesis experiments, which reveal residues involved in substrate binding and gating. The facilitated diffusion mechanism of transport used by PnuTSw contrasts sharply with the active transport mechanisms used by other bacterial thiamine transporters.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Shewanella/metabolismo , Tiamina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Difusão , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Ligação Proteica , Tiamina/análogos & derivados
4.
Biol Chem ; 396(9-10): 955-66, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26352203

RESUMO

Many bacteria can take up vitamins from the environment via specific transport machineries. Uptake is essential for organisms that lack complete vitamin biosynthesis pathways, but even in the presence of biosynthesis routes uptake is likely preferred, because it is energetically less costly. Pnu transporters represent a class of membrane transporters for a diverse set of B-type vitamins. They were identified 30 years ago and catalyze transport by the mechanism of facilitated diffusion, without direct coupling to ATP hydrolysis or transport of coupling ions. Instead, directionality is achieved by metabolic trapping, in which the vitamin substrate is converted into a derivative that cannot be transported, for instance by phosphorylation. The recent crystal structure of the nicotinamide riboside transporter PnuC has provided the first insights in substrate recognition and selectivity. Here, we will summarize the current knowledge about the function, structure, and evolution of Pnu transporters. Additionally, we will highlight their role for potential biotechnological and pharmaceutical applications.


Assuntos
Bactérias/metabolismo , Proteínas de Membrana Transportadoras , Vitaminas/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Conformação Molecular , Vitaminas/química
5.
Trends Biochem Sci ; 40(4): 183-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25757400

RESUMO

The evolutionary relation between sugar and vitamin transporters from the SWEET and Pnu families is unclear. They have similar 3D structures, but differ in the topology of their secondary structure elements, and lack significant sequence similarity. Here we analyze the structures and sequences of different members of the SWEET and Pnu transporter families and propose an evolutionary pathway by which they may have diverged from a common ancestor. A 3D domain swapping event can explain the topological differences between the families, as well as the puzzling observation that a highly conserved and essential sequence motif of the SWEET family (the PQ loop) is absent from the Pnu transporters.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Bactérias/genética , Evolução Biológica , Transporte Biológico , Proteínas de Membrana Transportadoras/genética , Família Multigênica/genética , Família Multigênica/fisiologia , Estrutura Secundária de Proteína
6.
Biochim Biophys Acta ; 1850(3): 565-76, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24836521

RESUMO

BACKGROUND: All organisms use cofactors to extend the catalytic capacities of proteins. Many bacteria and archaea can synthesize cofactors from primary metabolites, but there are also prokaryotes that do not have the complete biosynthetic pathways for all essential cofactors. These organisms are dependent on the uptake of cofactors, or at least their precursors that cannot be synthesized, from the environment. Even in those organisms that contain complete biosynthetic pathways membrane transporters are usually present, because the synthesis of cofactors is more costly than uptake. SCOPE OF REVIEW: Here we give an overview of bacterial and archaeal transport systems for B-type vitamins, which are either cofactors or precursors thereof. MAJOR CONCLUSIONS: Prokaryotic vitamin transporters are extremely diverse, and found in many families of transporters. A few of these transport systems have been characterized in detail, but for most of them mechanistic insight is lacking. GENERAL SIGNIFICANCE: The lack of structural and functional understanding of bacterial vitamin transporters is unfortunate because they may be targets for new antibiotics. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins. Guest Editor: Bjorn Pedersen.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Vitaminas/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Transporte Biológico , Variação Genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Vitaminas/química , Vitaminas/farmacocinética
7.
Nat Struct Mol Biol ; 21(11): 1013-5, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25291599

RESUMO

PnuC transporters catalyze cellular uptake of the NAD+ precursor nicotinamide riboside (NR) and belong to a large superfamily that includes the SWEET sugar transporters. We present a crystal structure of Neisseria mucosa PnuC, which adopts a highly symmetrical fold with 3+1+3 membrane topology not previously observed in any protein. The high symmetry of PnuC with a single NR bound in the center suggests a simple alternating-access translocation mechanism.


Assuntos
Proteínas de Bactérias/química , Neisseria mucosa/química , Niacinamida/análogos & derivados , Niacinamida/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Transporte Biológico , Sequência Conservada , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Neisseria mucosa/metabolismo , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Compostos de Piridínio , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
8.
FEBS J ; 280(4): 1112-25, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23279902

RESUMO

Cell-free in vitro synthesis of proteins using coupled transcription/translation is considered to be a powerful alternative to the use of traditional cell-based expression systems. Recently, promising developments have been reported applying cell-free production to membrane proteins for structural biology and in particular for NMR spectroscopy. However, the general applicability of this system to produce large amounts of stable, functional and homogeneous membrane proteins as required for X-ray crystallography remains to be determined. Here, we present a systematic study comparing structural and functional properties of membrane proteins produced using Escherichia coli derived in vitro and in vivo expression systems. The function of the target membrane protein, a previously uncharacterized bacterial glutamate transporter homolog from Staphylothermus marinus, was analyzed using ligand binding and transport assays. In addition, the protein structure was investigated with respect to its overall fold and oligomeric state in different detergents. We found that the protein synthesized in vitro is highly stable and monodisperse. However, in contrast to the protein produced using an in vivo system, it was not able to assemble into the native trimeric state nor to bind substrate. We thus conclude that cell-free expression systems can compromise folding and function of such complex secondary active transporters. The expression product has to be carefully characterized prior to biophysical investigations like crystallography of membrane proteins.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/biossíntese , Proteínas Arqueais/biossíntese , Desulfurococcaceae , Sistema X-AG de Transporte de Aminoácidos/química , Proteínas Arqueais/química , Reagentes de Ligações Cruzadas/química , Cristalização , Detergentes/química , Escherichia coli , Glucosídeos/química , Glutaral/química , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Ligação Proteica , Biossíntese de Proteínas , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
9.
FEBS Lett ; 583(10): 1631-6, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19409386

RESUMO

In the present study we show in the Xenopus laevis expression system that the proton-coupled amino acid transporter 1 (PAT1, SLC36A1) is glycosylated at asparagine residues N174, N183 and N470. To determine the functional role of N-glycosylation, glycosylation-deficient mutants were analyzed by two-electrode voltage-clamp measurements after expression in X. laevis oocytes. Single replacements of asparagine residues had no effect on transport activity. However, multiple substitutions resulted in a decreased transport rate, leaving K(t) unchanged. Immunofluorescence localisation revealed a diminished plasma membrane expression of glycosylation-defective mutants. This indicates that N-glycans are not required for transport function, but are important for membrane targeting.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Simportadores/metabolismo , Animais , Imunofluorescência , Glicosilação , Humanos , Modelos Biológicos , Mutagênese Sítio-Dirigida , Oócitos/metabolismo , Técnicas de Patch-Clamp , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...